Bayesian data assimilation based on a family of outer measures
نویسندگان
چکیده
A flexible representation of uncertainty that remains within the standard framework of probabilistic measure theory is presented along with a study of its properties. This representation relies on a specific type of outer measure that is based on the measure of a supremum, hence combining additive and highly sub-additive components. It is shown that this type of outer measure enables the introduction of intuitive concepts such as pullback and general data assimilation operations.
منابع مشابه
Dynamic Bayesian Information Measures
This paper introduces measures of information for Bayesian analysis when the support of data distribution is truncated progressively. The focus is on the lifetime distributions where the support is truncated at the current age t>=0. Notions of uncertainty and information are presented and operationalized by Shannon entropy, Kullback-Leibler information, and mutual information. Dynamic updatings...
متن کاملThe Family of Scale-Mixture of Skew-Normal Distributions and Its Application in Bayesian Nonlinear Regression Models
In previous studies on fitting non-linear regression models with the symmetric structure the normality is usually assumed in the analysis of data. This choice may be inappropriate when the distribution of residual terms is asymmetric. Recently, the family of scale-mixture of skew-normal distributions is the main concern of many researchers. This family includes several skewed and heavy-tailed d...
متن کاملSampling The Posterior: An Approach to Non-Gaussian Data Assimilation
The viewpoint taken in this paper is that data assimilation is fundamentally a statistical problem and that this problem should be cast in a Bayesian framework. In the absence of model error, the correct solution to the data assimilation problem is to find the posterior distribution implied by this Bayesian setting. Methods for dealing with data assimilation should then be judged by their abili...
متن کاملA Bayesian Approach to Data Assimilation
Data assimilation is formulated in a Bayesian context. This leads to a sampling problem in the space of continuous time paths. By writing down a density in path space, and conditioning on observations, it is possible to define a range of Markov Chain Monte Carlo (MCMC) methods which sample from the desired distribution in path space, and thereby solve the data assimilation problem. The basic bu...
متن کاملHyperbolic Cosine Log-Logistic Distribution and Estimation of Its Parameters by Using Maximum Likelihood Bayesian and Bootstrap Methods
In this paper, a new probability distribution, based on the family of hyperbolic cosine distributions is proposed and its various statistical and reliability characteristics are investigated. The new category of HCF distributions is obtained by combining a baseline F distribution with the hyperbolic cosine function. Based on the base log-logistics distribution, we introduce a new di...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1611.02989 شماره
صفحات -
تاریخ انتشار 2016